Quantitation of Nuclear Magnetic Resonance Spectra at Earth’s Magnetic Field

The inherently quantitative nature of nuclear magnetic resonance (NMR) spectroscopy is one of the most attractive aspects of this analytical technique. Quantitative NMR analyses have typically been limited to high-field (>1 T) applications. The aspects for quantitation at low magnetic fields (<1 mT) have not been thoroughly investigated and are shown to be impacted by the complex signatures that arise at these fields from strong heteronuclear J -couplings. This study investigates quantitation at Earth’s magnetic field (∼50 μT) for a variety of samples in strongly, weakly, and uncoupled spin systems. To achieve accurate results in this regime, the instrumentation, experimental acquisition, processing, and theoretical aspects must be considered and reconciled. Of particular note is the constant field nuclear receptivity equation, which has been re-derived in this study to account for strong coupling and quality factor effects. The results demonstrate that the quantitation of homonuclear molecular groups, determination of heteronuclear pseudoempirical formulas, and mixture analysis are all feasible at Earth’s magnetic field in a greatly simplified experimental system.